

Hydrogen Peroxide Oxidation of Benzylic Alcohols to Benzaldehydes and Benzoic Acids Under Halide-Free Conditions

Kazuhiko Sato, Junko Takagi, Masao Aoki, and Ryoji Noyori*

Department of Chemistry and Research Center for Materials Science, Nagoya University Chikusa, Nagoya 464-8602, Japan

Received 6 July 1998; accepted 31 July 1998

Abstract: A series of benzaldehyde and benzoic acid derivatives can be obtained from benzylic alcohols by tungsten-catalyzed oxidation with aqueous hydrogen peroxide under halide-free, aqueous/organic biphasic conditions. © 1998 Elsevier Science Ltd. All rights reserved.

Selective oxidation of benzylic alcohols to benzaldehydes or benzoic acids is not easy, particularly on a preparative scale.¹ The efficiency is highly dependent on substituents of the aromatic ring. Here we report that a system consisting of Na₂WO₄ and a quaternary ammonium hydrogensulfate as a phase-transfer catalyst (PTC)^{2,3} allows for the selective oxidation of various substituted benzyl alcohols using aqueous H_2O_2 under halide-free, biphasic conditions.^{4,5} This method is practical because of the low cost, safety, and with less harm to the environment. The scope and limitations are described below.

A benzylic alcohol is oxidized at 90 °C with 30% H_2O_2 in the presence of Na_2WO_4 and $[CH_3(n-C_8H_{17})_3N]HSO_4$ to give the corresponding benzaldehyde in a good yield. Some examples of the 100 g-scale reaction (alcohol:catalyst molar ratio = 50–330:1) are given in Table 1. Since unproductive decomposition of H_2O_2 is negligible with the tungsten catalyst system, the oxidation is accomplished with <1.5 equiv of the oxidizing agent per equiv of the alcohol.⁶ This catalyst system is more reactive than Venturello's $[CH_3(n-C_8H_{17})_3N]_3PO_4[W(O)(O_2)_2]_4$ which has been used for solvent-free oxidation of benzyl alcohol and its p-methyl derivative. Furthermore, unlike oxidation with quaternary ammonium chloride that requires 70% H_2O_2 and 1,2-dichloroethane as solvent, this reaction is achieved under milder and chloride-free conditions.

In the oxidation of ring-substituted benzyl alcohols, water, H₂O₂, alcohols, and other nucleophiles present may react with the resulting aldehydes. The stability and reactivity of the tetrahedral intermediates are significantly affected by the electronic properties of the substituents as well as the reaction conditions. In fact, with the earlier catalytic systems,⁴ the presence of certain polar substituents caused considerable side reactions. We can now obtain a series of aromatic aldehydes by selecting proper reaction parameters (Table 1). The oxidation of an oily or low-melting alcohol is accomplished without organic solvent. Toluene can be used as

XC ₆ H ₄ CH ₂ OH		H ₂ O ₂ ,	Na ₂ WO ₄ and PTC,		% yield of
X	mmol	mmol (equiv)	mmol (S/C) ^b	time, h	XC ₆ H ₄ CHO ^c
p-CH ₃ O	724	1086 (1.5)	14.5 (50)	5	90 ^{d, e}
p-CH ₃	819	983 (1.2)	4.1 (200)	4.5	91
o-СН ₃	819	983 (1.2)	4.1 (200)	4.5	88
Н	925	1018 (1.1)	2.8 (330)	3	87
p-Br	535	696 (1.3)	2.7 (200)	4.5	81
p-Cl	701	841 (1.2)	3.5 (200)	4.5	82
p-NO ₂	5	10 (2)	0.1 and 0.05 (50 and 100)	17	59f,g,h
3,4-Benzo ⁱ	632	759 (1.2)	3.2 (200)	4.5	82 ^{j,k}

Table 1. Oxidation of benzylic alcohols to benzaldehydes^a

solvent, if necessary, as, for example, the oxidation of substrates such as p-methoxybenzyl alcohol which have low log P values⁷ are conducted better in toluene. Even p-methoxybenzyl alcohol, regarded as the most difficult substrate, ^{4b} gave the aldehyde in 90% yield.⁸ The high efficiency of this new procedure⁹ is consistent with our recent finding that 3–5% aqueous H₂O₂ oxidizes alcohols more rapidly than 30% H₂O₂.³ Oxidation of p-nitrobenzyl alcohol is still difficult, the highest yield obtained so far is 59%.

A range of benzyl alcohols are directly convertible to the corresponding benzoic acid derivatives using 2.5–5 equiv of H₂O₂ (theory, 2 equiv) and a 0.01 molar amount of Na₂WO₄ and PTC. Table 2 lists some examples of the 100-g scale oxidation. Mechanistically, hydration of benzaldehyde derivatives followed by tungsten-catalyzed dehydrogenation with H₂O₂ is expected to yield benzoic acids. However, addition of H₂O₂ or peracids ¹⁰ to the aldehydes competes with hydration. The resulting peroxy intermediates are transformed to either the desired benzoic acids (H migration) or aryl formates (aryl migration) by a Baeyer–Villiger mechanism. The latter undesired pathway becomes significant with electron-donating substituents, since the resulting phenols are further oxidized to give complex mixtures. Thus, *p*-methoxybenzoic acid cannot be obtained by this method. Electron-withdrawing substituents tend to efficiently give the carboxylic acids. Thus, *p*-nitrobenzyl alcohol was converted to the benzoic acid in 91% yield (97% by HPLC analysis) by oxidation using 4 equiv of H₂O₂ followed by treatment with an aqueous solution of Na₂S₂O₃. ¹¹ Separate experiments using 30% H₂O₂ with or without Na₂WO₄ revealed that carboxylic acids are derived via dual pathways, *viz.*, the tungsten-catalyzed dehydrogenation of aldehyde hydrates (minor) and the acid-catalyzed Baeyer–Villiger reaction involving aldehyde peroxy hydrates (major). ¹² The extent of the latter route increases with electron-withdrawing substituents. ¹³

^a Unless otherwise stated, a 0.1 molar ratio of 5% H_2O_2 to an alcohol was used for activation of the W catalyst, and 30% H_2O_2 was added dropwise to a mixture of the catalysts and alcoholic substrate with stirring at 1000 rpm at 90 °C. See footnote 8. PTC = $[CH_3(n-C_8H_{17})_3N]HSO_4$. ^b Substrate/catalysts molar ratio. ^c Isolated by distillation. ^d Toluene (150 mL) was used as solvent. ^e Reaction at 70 °C. ^f Determined by HPLC analysis. ^g Toluene (8 mL) and ethyl acetate (2 mL) were used as solvent. ^h Conversion was 80%. p-Nitrobenzoic acid was formed in 15% yield. ⁱ 2-Naphthylmethanol. ^j Reaction was run using 5% H_2O_2 with stirring at 1000 rpm at 90 °C. ^k Yield of 2-naphthalenecarbaldehyde.

XC ₆ H₄CH ₂ OH		H ₂ O ₂ ,	Na ₂ WO ₄ and PTC,		% yield of
X	mmol	mmol (equiv)	mmol (S/C) ^b	time, h	XC ₆ H₄COOH ^c
p-CH ₃ O	5	25 (5)	0.05 (100)	12	1 ^{d, e, f}
<i>p</i> -CH ₃	819	4092 (5)	8.2 (100)	12	80^d
Н	925	2313 (2.5)	9.2 (100)	5	81^d
p-Br	535	2138 (4)	5.4 (100)	4	86
p-Cl	701	2806 (4)	7.0 (100)	4	87
p-NO ₂	653	2612 (4)	6.5 (100)	4	91

Table 2. Oxidation of benzylic alcohols to benzoic acids^a

^a Unless otherwise stated, the reaction was run with 30% H_2O_2 with stirring at 1000 rpm at 90 °C. See footnote 11. PTC = $[CH_3(n-C_8H_{17})_3N]HSO_4$. ^b Substrate/catalysts molar ratio. ^c Isolated by recrystallization from a 4:1 methanol—water mixture. ^d A 0.1 molar ratio of 5% H_2O_2 to an alcohol was used for activation of the W catalyst, and 30% H_2O_2 was added dropwise to a mixture of the catalysts and an alcoholic substrate. ^e Reaction was run in 1 mL of toluene at 70 °C. ^f Determined by GC analysis. p-Methoxybenzoic acid was analyzed after conversion to the methyl ester with trimethylsilyldiazomethane.

REFERENCES AND NOTES

- a) Hollingworth, G. J. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Pattenden, G., Eds.; Elsevier Science Ltd.: Oxford, 1995; Vol. 3, pp 81–109. b) Larock, R. C. Comprehensive Organic Transformations; VCH Publishers, Inc.: New York, 1989; pp 604–614.
- a) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Noyori, R. J. Org. Chem. 1996, 61, 8310–8311.
 b) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Panyella, D.; Noyori, R. Bull. Chem. Soc. Jpn. 1997, 70, 905–915.
- 3. Sato, K.; Aoki, M.; Takagi, J.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 12386-12387.
- 4. For pioneering efforts on tungsten-catalyzed H₂O₂ oxidation of benzyl alcohols, see: a) Bortolini, O.; Conte, V.; Di Furia, F.; Modena, G. J. Org. Chem. 1986, 51, 2661–2663. b) Venturello, C.; Gambaro, M. J. Org. Chem. 1991, 56, 5924–5931. See also: c) Jacobson, S. E.; Muccigrosso, D. A.; Mares, F. J. Org. Chem. 1979, 44, 921–924. d) Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada, H.; Yoshida, T.; Ogawa, M. J. Org. Chem. 1988, 53, 3587–3593.
- Other catalytic methods: a) [Ce(IV)/O2] Hatanaka, Y.; Imamoto, T.; Yokoyama, M. *Tetrahedron Lett.* 1983, 24, 2399–2400. b) [TEMPO and Cu(I)/O2] Semmelhack, M. F.; Schmid, C. R.; Cortés, D. A.; Chou, C. S. *J. Am. Chem. Soc.* 1984, 106, 3374–3376. c) [Ru(II), hydroquinone, and Co(II)/O2] Bäckvall, J.-E.; Chowdhury, R. L.; Karlsson, U. *J. Chem. Soc., Chem. Commun.* 1991, 473–475. d) [Cu(I)/O2] Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. *Science* 1996, 274, 2044–2046. e) [TPAP/O2] Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Chellé-Regnaut, I.; Urch, C. J.; Brown, S. M. *J. Am. Chem. Soc.* 1997, 119, 12661–12662. f) [TPAP/O2] Lenz, R.; Ley, S. V. *J. Chem. Soc., Perkin Trans.* 1 1997, 3291–3292. g) [Ru-Al-Mg hydrotalcite/O2] Kaneda, K.; Yamashita, T.; Matsushita, T.; Ebitani, K. *J. Org. Chem.* 1998, 63, 1750–1751. h) [Ce(IV)/NaBrO3] Ho, T.-L. *Synthesis* 1978, 936. i) [Ru(III)/NaBrO3] Kanemoto, S.; Tomioka, H.; Oshima, K.; Nozaki, H. *Bull. Chem. Soc. Jpn.* 1986, 59, 105–108. j) [Ti(IV) or Zr(IV)/TBHP] Krohn, K.; Khanbabaee, K.; Rieger, H. *Chem. Ber.* 1990, 123, 1357–1364. k) [TPAP/4-methylmorpholine oxide] Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. *J. Chem. Soc., Chem. Commun.*

- 1987, 1625–1627. l) [Ru(II)/C₆H₅IO] Müller, P.; Godoy, J. Tetrahedron Lett. 1981, 22, 2361–2364. m) [PDC or Ru(II)/[(CH₃)₃SiO]₂] Kanemoto, S.; Oshima, K.; Matsubara, S.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1983, 24, 2185–2188. n) [TEMPO/m-CPBA] Cella, J. A.; Kelley, J. A.; Kenehan, E. F. J. Org. Chem. 1975, 40, 1860–1862. o) [Ru(II)/α,β-unsaturated ketone] Sasson, Y.; Blum, J. Tetrahedron Lett. 1971, 2167–2170. p) [Ru(III)/CCl₄] Sasson, Y.; Wiener, H.; Bashir, S. J. Chem. Soc., Chem. Commun. 1987, 1574–1575.
- 6. Barak, G.; Dakka, J.; Sasson, Y. J. Org. Chem. 1988, 53, 3553–3555. Since Ru complexes catalyze decomposition of H₂O₂, use of a 2.7 molar amount of the oxidizing agent is required.
- 7. Nys, G. G.; Rckkcr, R. F. Eur. J. Med. Chem. 1974, 9, 361-375.
- 8. Oxidation of *p*-methoxybenzyl alcohol to *p*-methoxybenzaldehyde: A 500-mL, three-necked, round-bottomed flask equipped with a magnetic stirring bar, a reflux condenser, a thermometer, and a 100-mL dropping funnel was charged with Na₂WO₄·2H₂O (4.77 g, 14.5 mmol), [CH₃(*n*-C₈H₁₇)₃N]HSO₄ (6.74 g, 14.5 mmol), and aqueous 5% H₂O₂ (49.2 g, 0.0724 mol), and the mixture was vigorously stirred at room temperature for 10 min. *p*-Methoxybenzyl alcohol (100 g, 0.724 mol) and 150 mL of toluene were then added and the mixture was heated at 70 °C for 10 min. With stirring at 1000 rpm, aqueous 30% H₂O₂ (114.4 g, 1.009 mol) was added dropwise via the dropping funnel over a period of 5 h, while maintaining the temperature of the reaction mixture below 75 °C. After cooling to room temperature, the organic phase was separated, washed with 50 mL of saturated aqueous Na₂S₂O₃, and distilled through a 15-cm Vigreux column to give *p*-methoxybenzaldehyde (88.8 g, 90% yield) as a colorless liquid, bp 137–138 °C/23 mmHg.
 - This particular reaction used a 0.02 molar amount of the W catalyst and PTC and tolucne as solvent. However, oxidation of many other substrates was conducted with only a 0.005 molar amount of the catalysts without solvent and at 90 °C under otherwise identical conditions.
- 9. The procedure was improved from that reported earlier.³
- 10. A peracid may be produced from the benzoic acid formed initially and H₂O₂ under the reaction conditions.
- 11. Oxidation of *p*-nitrobenzyl alcohol to *p*-nitrobenzoic acid: A mixture of Na₂WO₄·2H₂O (2.15 g, 6.53 mmol), [CH₃(*n*-C₈H₁₇)₃N]HSO₄ (3.04 g, 6.53 mmol), and aqueous 30% H₂O₂ (296.2 g, 2.612 mol) was vigorously stirred at room temperature for 10 min. Then, *p*-nitrobenzyl alcohol (100 g, 0.653 mol) was added, and the mixture was heated at 90 °C for 4 h with stirring at 1000 rpm. After the reaction mixture was allowed to stand at 0 °C for 12 h, the resulting yellow precipitate was separated by filtration, washed with 20 mL of cold water, dissolved in 500 mL of ethyl acetate and washed with 100 mL of saturated aqueous Na₂S₂O₃. The organic phase was separated and concentrated under reduced pressure. The product was recrystallized from 4:1 methanol–water giving 99.6 g (91%) of *p*-nitrobenzoic acid as a white solid, mp 238.0–239.0 °C. The yield determined by HPLC (column, Develosil ODS-5, 4.6 mm x 25 cm, NOMURA CHEMICAL) was 97%. The solid product prior to the treatment with aqueous Na₂S₂O₃ was contaminated with 5% of the perbenzoic acid.
- 12. Reaction of benzaldehyde (5 mmol) and 30% H₂O₂ (12.5 mmol) in the presence of Na₂WO₄·2H₂O (0.05 mmol) and [CH₃(*n*-C₈H₁₇)₃N]HSO₄ (0.05 mmol) at 90 °C for 3 h gave benzoic acid in 91% yield (GC analysis). In the absence of Na₂WO₄·2H₂O, the acid was obtained in 85% yield under the identical conditions. Note, however, that the latter is not a pure "back-ground" reaction, because the acidity of the reaction system is significantly increased by the removal of the tungsten salt.
- 13. This work was supported by the Ministry of Education, Science, Sports and Culture of Japan (No. 07CE2004).